基础知识

基础概念

变换和算子

变换和算子的最本质区别在于,经过“算子”运算,变量没有变,比如微分就是一种典型的算子,而经过“变换”运算则会改变变量的形式。

运算

点积/内积/数量积(dot product/scalar product):

两个向量的夹角

叉积:

两个向量的法向量

Hadamard product(哈达玛积): 矩阵对应位置的数字相乘
(1)\[\begin{split}A\odot B =\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{array} \right] \left[\begin{array}{ccc}b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33}\end{array}\right] =\left[\begin{array}{ccc}a_{11} \cdot b_{11} & a_{12} \cdot b_{12} & a_{13} \cdot b_{13}\\ a_{21} \cdot b_{21} & a_{22} \cdot b_{22} & a_{23} \cdot b_{23}\\ a_{31} \cdot b_{31} & a_{32} \cdot b_{32} & a_{33} \cdot b_{33}\end{array} \right]\end{split}\]
Kronecker product(克罗内克积/直积/张量积):
(2)\[\begin{split}A\otimes B =\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{array} \right] \left[\begin{array}{ccc}b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33}\end{array}\right] =\left[\begin{array}{ccc}a_{11} B & a_{12} B & a_{13} B\\ a_{21} B & a_{22} B & a_{23} B\\ a_{31} B & a_{32} B & a_{33} B\end{array} \right]\end{split}\]
拉普拉斯算子
\[\bigtriangleup f = \bigtriangledown ^2f = \sum_i{\frac{\partial ^2 f}{\partial ^2 x_i}} = Tr(Hession(f))\]

各种变换

傅里叶变换

傅里叶级数

傅立叶级数是针对周期函数的,为了可以处理非周期函数,需要傅立叶变换

傅里叶变换

傅里叶级数到傅里叶变换

拉普拉斯变换

为了解决傅里叶变换某些情况下不可积, 引出了拉普拉斯变换

拉普拉斯变换

拉普拉斯变换中的S是个什么鬼?

Where the Laplace Transform comes from (Arthur Mattuck, MIT) 1.0

Where the Laplace Transform comes from (Arthur Mattuck, MIT) 2

特殊的函数

克罗内克函数(Kronecker delta function)
\[\begin{split}\delta_{ij} = \left\{ \begin{array}{ll} 0 & \textrm{if $i \ne j$} \\ 1 & \textrm{if $i= j$} \end{array} \right.\end{split}\]
狄拉克函数(dirac delta)
\[\begin{split}\delta(x) = \left \{ \begin{array}{ll} 0 & x\ne 0 \\ 1 & x =+ \infty \end{array} \right.\end{split}\]

有趣的知识

自然数为什么叫自然数

复杂度计算